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Abstract

Records and variants pervade programming languages. Records give a foundational
model to objects (a la object-oriented programs) and variants to algebraic data types
(a la functional programs). Many type systems have been proposed to ensure static
type safety and other metatheoretic properties of systems with records and variants.
Row types describe one approach, in which records and variants are constructed
from maps associating labels with types, or rows. This report describes row type
systems from their foundation to today. It also advertises recent work on R®, a
higher-order row type system with first-class labels.



1 Introduction

Records and variants pervade programming languages: records model objects and
modules; variants, dual to records, model algebraic data types. Respectively, these
are the foundational data types of object-oriented programming and functional pro-
gramming. Despite their ubiquity, they have proven notoriously difficult to ex-
tend simultaneously in both their representations and their behaviors. Wadler [49]
termed this the expression problem: adding new methods to a class interface re-
quires refactoring its implementors; adding new cases to an algebraic data type
requires refactoring its functions. Row types are one approach to solving this prob-
lem based on the simple observation that both records and variants are constructed
from the same matter: associations of labels to types, or rows.

Wand [51] proposed row type systems to safely type record extensibility. Row
type systems have since been used to describe many additional aspects of record
and variant calculi, such as record concatenation [53], type inference and poly-
morphism [43], efficient compilation schemes [11], first-class mixin modules [28],
and first-class labels [20]. Row type systems have also seen successful application
in other active research areas, such as algebraic effects [23, 14] and session types
[26]. The structure rows take in each of these type systems is not uniform, but at
their intersection is the simple observation above: rows map labels to types.

This report introduces readers to row type systems modulo the numerous row the-
ories above. In this sense, it can serve as a sort of tutorial for those unfamiliar with
row type systems. We place special emphasis on row type systems with qualified
types; the reader should not confuse their presence here as ubiquity in row type
systems writ large. Rather, in sections 3 and 4, we offer a view of row type sys-
tems catered towards our (my) interests in two qualified type systems, ROSE [34]
and Rw [15]. These systems are discussed (resp.) in sections 5 and 6. Both are
type theories parametric over row theories—that is, they may be instantiated with
theories of rows from the other works cited. Thus, despite some restricted scope,
we must still cover quite a bit of the literature. We begin by motivating rows in the
context of the (still) open problems they were first designed to address.

2 Background

We introduce the reader to records, variants, and open problems in the expression
thereof. This motivates the formal introduction of rows in the next section. Exam-
ples are given in Haskell-style notation and analogies are drawn between row type
systems and Haskell as it is implemented in GHC [1]. We presume of the reader
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some familiarity with the two.

2.1 Records

Records group names, or labels, with data. They generalize finite products of data
(a la set or category theory). Consider (in abstract) such a product now.

p= (1, 2)

What does p represent? Some sort of point? It is common wisdom in software
design that “the ratio of time spent reading versus writing code is well over ten to
one.” [29] Let’s let the next reader know what we are writing.

p=(&x=1,y = 2)

The term p is now a record that groups labels x and y with values 1 and 2. It is not
ambiguous to us that the first component is x and the second component y. Further,
we can group our code according to this specification: functions can be written
just for points, and so on. This is good software design, and has seen widespread
adoption in the form of objects, albeit in different syntax. Try Java’s':

class 2dPoint {
X , y :: float

void 2dPoint(float x, float y) {
this.x = x;
this.y = y;
}
}

We construct objects in Java by specifying a value for each label, as illustrated by
the following in combination with lines 5 and 6 above.

2dPoint p = new 2dPoint (1.0, 2.0)

Dually, we destruct a record by projecting a value from a given label, e.g., p.x and
p.y.

2.2 Variants

Variants express the choice of one label among many. The algebraic data types of
e.g. Haskell are variants, whose constructors are labels. Let’s consider a simple

I'We will elide the public, private, and static annotations from Java’s syntax, none of which
have meaningful context w.r.t. the systems in this report.



example.

data Expr = Val Int | Plus Expr Expr

The Expr data type is an abstract syntax tree (AST) for an arithmetic language
with addition over integer literals. We represent this AST as a variant with labels
Val and Plus mapped (resp.) to Int and (recursively) Expr x Expr. We construct
a variant by choosing one label to occupy, e.g., we may declare a synonym for the
value one as

one :: Expr

one = Val 1

and then represent the addition of one and one as:

two :: Expr
two = Plus one one

We destruct a variant by specifying what to do in each case. This is specified
by a series of equations in Haskell. For example, it is straightforward to write an
evaluator in this manner below.

eval :: Expr -> Int

eval (Val x) =x
eval (Plus x y) = eval x + eval y

Each equation handles a case. The first case returns the Int held in Val x; the
second case evaluates each subtree and adds the result. Observe:

> eval two
2

Variants are dual to records: we construct records (and destruct variants) by as-
signing each label a value; we construct variants (and destruct records) by specify-
ing the value at (resp., behavior of) one label. This follows directly from the duality
of products and sums.

2.3 The Duality of Products and Sums

It will be helpful for the reader to think of records, variants, products and sums
not as what they are but as what they do—or, to borrow a well known maxim in
category theory, “it’s the arrows that matter”. They are dual in the latter sense. We
illustrate this now, which should aid the reader’s conceptualization of the next two
sections.

Consider products and disjoint sums in set theory. If we have an element = €
A x B, then we may destruct z in one of two ways—we either grab the element of



set A or the element of set B.

AP Axp s, p

Dually, if we have element z € AW B, then z was constructed in one of two ways:
as either a left element of set A or a right element of set B.

A left ALB right B

These constructions generalize to n-ary finite products and sums as well as to
labeled records and variants—in all you will see the same duality of arrows. We
may think of the arrows out of records as specifying the record’s behavior, and the
arrows into variants as specifying the variant’s cases. As data types are variants, the
arrows inward are the fixed constructors; as objects are records, the arrows outward
are the fixed destructors (i.e, the interface). Fixing each of these permits the other to
extend easily—data types can freely gain more behaviors, while records can freely
gain more cases. It is difficult however to let a data type or record extend freely in
both directions. This is a well known problem in programming language design,
which we describe next.

2.4 The Expression Problem

Variants are not freely extensible: we cannot extend the Expr type with a new case
without altering its definition and the definitions of its behaviors (e.g. eval). This
was already an “old problem” when Wadler [49] termed it the expression problem,
stating that:

The goal is to define a data type by cases, where one can add new
cases to the data type and new functions over the data type, without
recompiling existing code, and while retaining static type safety.

The name is a pun: Wadler is describing a difficulty in expressing variant exten-
sion by benchmarking it literally with a data type for arithmetic expressions. The
benchmark goes like this: add a new case to the Expr data type (def. §2.2), like
multiplication.

data Expr = Val Int | Plus Expr Expr | Mult Expr Expr

The eval function is no longer totally defined on all cases, and applications such
as the following will incur runtime errors.
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Figure 1: The Expr data type as a table

eval (Mult (Val 1) (Val 2))

To fix this application, we must refactor eval to be well-defined for inputs con-
structed by the Mult. This is not too bad for just one function, but the work is
multiplied by all functions over Expr. Dually, we may want to write nano-passes
over ASTs during compilation so that AST manipulation is modular. When blown
to scale, this can have serious implications in domains such as compiler design.
Consider Leroy’s [24] compcert compiler, which translates from C source code
through eight intermediate languages—many of which have substantial syntactic
overlap—on its way to assembly.

Wadler illustrates the expression problem as a table in which the rows and columns
are (resp.) the cases and functions of the data type (Figure 1). When programming
with variants, the rows are fixed, and so adding new columns (functions) is easy but
new rows (cases) difficult. Dually, when programming with records, the columns
are fixed, and so adding rows (inheritors) is easy but columns (new methods) diffi-
cult.?

Consider the dual in Java (Figure 2). As we are declaring a record (not variant),
construction is dual to the Haskell case: rather than specify the variant constructors,
we specify the types of eliminators in the Expr interface (Figure 2A, lines 1-3). The
interface says that valid expressions must evaluate to integers. We declare each case
as implementing the Expr interface (lines 5-15 and 17-28). The logic in each class
is functionally equivalent to that of the Haskell implementation above: the literal
case stores int literal x (lines 8-10) and returns it upon evaluation (lines 12-15); the
addition case stores left and right Expr subtrees (lines 20-23) and evaluates to the
sum of each tree’s evaluation (lines 25-27). Adding a new case for multiplication
(Figure 2B) is easy and the other cases remain well-typed. However, changing the
interface (Figure 2C) makes each class ill-typed:

> javac Expr.java

Expr.java error: Lit does not override method print()
Expr.java error: Plus does not override method print()

2This is quite literally the case with relational databases, which is no coincidence—think of table
schema as record types and table rows as record terms.
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So, dual to the functional case, the Expr interface permits the free extension of
its cases (Lit and Plus) while fixing the behaviors (eval). The challenge, when
approached from this side, is to permit the free extension of behaviors. We consider

next such an approach.

interface Expr {
public int eval();
}

class Lit implements Expr {
int x;

Lit(int x) {
this.x = x;

}

int eval() {
return this.x;
}
}

class Plus implements Expr {
Expr left , right;

Plus(Expr left, Expr right)
this.left = left;
this.right = right;

}

int eval() {
return
left.eval() +
right.eval();

(a) Integer literal and addition ASTs in Java
(public annotations elided for space)

class Mult implements Expr {
Expr left , right;

Mult (Expr left, Expr right) {

this.left = left;
this.right = right;
X

int eval() {
return left.eval() =*
right.eval();

(b) Multiplication AST in Java

© 0 N ;R W N =

interface Expr {
int eval();
String print();
}

(c) The Expr interface of Figure 2A with

new method print ()

Figure 2: The expression problem in Java

W =



2.5 Structural Inheritance

Structural inheritance (or, structural subtyping) is one solution to the expression
problem’s dual.> The aim of structural inheritance is to type object inheritance by
field sets, not names. Let us illustrate with a simple example.

class 2dPoint { class 3dPoint {
float x , y; float x , y, zZ;
} }

It is natural to consider the 3dPoint class an extension of 2dPoint, as it overlaps
at the x and y fields. There exist two main styles of expressing this relationship
in the type system. Nominal inheritance expresses the relationship as a strictly
declared hierarchy: 3dPoint inherits from 2dPoint if we declare it so. This is
standard practice in Java.

class 3dPoint extends 2dPoint {
float z;
}

Alternatively, a structural treatment of inheritance describes when one object in-
herits from another if and only if the subobject has all of the fields (and, perhaps
others) of its parent. So, a 3dPoint is not a 2dPoint because we declared so, but
automatically so: a 3dPoint has all the fields of a 2dPoint. This is the behavior of
e.g. objects in OCaml, which are typed by their methods [35]. For example, in the
OCaml code below, we expect object g to be an inheritor of object p.

let p =
object
method x = 1
end; ;
let q =
object
method x
method y
end; ;

non
N =

These terms have types

p: <x:int >
q : <x :int; y : int >

and so we should expect two scenarios to hold: that g may be coerced to the type
of p

3 Although declared along both OOP and functional axes, it is common to let the “expression
problem” refer to only the latter unless otherwise specified.



# (q :> < x : int >)
- : < x : int >

and, by consequence, a function expecting an input with the type of p accepts q as
well:

let get_x r

= r#x;;
val get_x : < x :

a; .. >->'a= <fun>

# get_x q

- :int =1

The types of these terms have included lists of label-type associations, e.g., the
type < x : int; y : 1int > denotes an object mapping x and y to int. We
call these rows.

3 Row Types — Basics

We have offered some intuition to long-open problems in record and variant ex-
tensibility. We used object-oriented programming (via Java) to illustrate records
and functional programming (via Haskell) to illustrate variants. In this section, we
consider formal systems for record and variant calculi, all of which are purely func-
tional. So, we drop the parlance of OOP—we have records, not objects; functions,
not methods; labels, not fields; and terms, not variables.

3.1 Rows ala Wand and Rémy

Wand [51] introduced row typing to formally capture structural inheritance of ob-
jects. A row, in (most) row type systems, describes an association of labels to types.
The precise shape of rows otherwise varies. Wand shapes rows most simply as lists
of pairs. We give the syntax of rows in Wand’s [51] system below.

Rows p = ale|(l>1,p)
A Row can be either: a row variable o; the empty row €, analogous to nil; or

({>1,p), the extension of a row p with ¢ labeling the type 7, analogous to cons.
The following row captures the labels and types of the 3dPoint record

(z>Float,(y>Float, (z>Float,€))).
But this is quite bloated. Where possible, we instead write

9



(z>Float,y>Float, z>Float).

Both record and variant types are constructed from rows, but do dual things with
the row information. Rows constructing record types describe the names and output
types of record eliminators; rows constructing variant types describe the names and
input types of variant constructors. This duality is captured in the type system: IIp
constructs a record from row p and Xp a variant. We give a type and term syntax
for each of these below.

Types t:=1Ip|Xp]|..
Terms M,N == 0|{{>M,N} | M.L|
injl M | case!M NP | ..

The term syntax describes record introduction (called extension), record elimina-
tion (called selection), variant introduction (called injection), and variant elimina-
tion (called case distinction). All record and variant calculi have some mix of these
operations. Let’s define each now.

Definition 1 (Record extension). Record extension, denoted {¢> M, N}, refers to
the extension of record NV by the singleton row (£1> M ).

By extension, we often (but not always) mean to add only one entry whose label
is not present. This distinction is emphasized so as to not confuse extension with
update.

Definition 2 (Record update). A record is updated when we modify the value of a
label already present in a record. So, we update {¢> M, N} to be {¢>M' N}.

So, extension requires the absence of a label and update requires the presence of.
The operation of doing the former when the label is present but the latter otherwise
is always referred to as simultaneous extension and update. Confusingly, this is the
actual behavior of extension in Wand’s semantics (c¢f. §3.1.3).

Definition 3 (selection). Record selection, denoted M .4, projects the value at ¢ in
record M. So, {z>1}.z should equal 1, and so forth.

Definition 4 (injection). Variant injection, denoted inj ¢ M, constructs a variant of
type X(¢> M, p). Note that p may be any row—we may always inject a singleton
case into a larger variant.

Definition 5 (case distinction). Variant case distinction, denoted case/ M N P, de-
structs the variant N : £p by checking if N was constructed with label /; if so, pass

10



N to M : p(¢) — 7 and, if not, default to P : 7. The metasyntax p(¢) denotes the
type 7 such that (/1> 7) occurs somewhere in p.

We will note when the syntax or semantics of these operations later differs. The
record operations stay pretty consistent between systems; the variant operations
vary more greatly. In particular, most systems have their own flavor of variant
destruction.

3.1.1 Structural Inheritance With Rows

Structural inheritance in Wand’s system can be demonstrated by repeating the OCaml
examples above. Actually (by no real coincidence [43]), Wand’s calculus is suffi-
cient to type these examples. In the finite-row case (i.e, where the row is an exten-
sion of the empty row), we had the OCaml object of type

<x :int ; y : int >

which may be written in Wand’s calculus as the record type

II(z>int, y>int).

In the extensible case (where the row extends a type variable), rewrite the OCaml
row type

<x:'a; ..>

to

H(z>a,p).

In both case, the coercion of records with more fields to records with less permits
functions expecting the latter to accept the former.

3.1.2 Rows & The Expression Problem

Early row systems (i.e, all those discussed in §3) omit any substantial treatment of
variants. Correspondingly also omitted is any treatment of the expression problem—
understandably so, as it had yet to be popularized by Wadler [49] to the degree it
is today by (although Reynolds [44] had already described the problem as early as
1975). Nevertheless, we can demonstrate some progress thereof. Recall the data
type for arithmetic expressions,

data Expr = Val Int | Plus Expr Expr

11



and rewrite in the language of rows as an extensible variant.

Expr := X (Vale Int,Plus>Expr X Expr,p)

Now, retype and rewrite evaluation

eval :: X(ValpInt,Plus>Expr X Expr,p) — Int
eval v =
case Val (A x. x) v
(case Plus (A (x, y). x +y) v 0)

where the case primitive is as described in Definition 5. If we let p equal (Mult >
Expr x Expr) then a variant constructed as the Mult case is an acceptable input to
eval. This is the gist of the dual story, with some complexity swept under the rug—
namely, eval permits the multiplication case but does not define it (the default case,
0, would instead be used). Additionally, the Expr type is recursive, which we do
not support in any of our presented calculi. The former is remedied by composing
eval above with a handler for multiplication, i.e.:

eval' v = case Mult (...) v (eval v)

The latter is, to this author’s knowledge, not described formally in any of the row
type literature; consequently, nor is a proper stab at the expression problem as it is
described by Wadler. But well-founded recursive variants are in fact inductive data,
which themselves have been the object of extensive inquiry [12]. So, there may be
some merit in this line of future research.

3.1.3 Label Overlaps

Wand [51] interprets rows as partial functions from some set £ of labels to the set
of all types generated by the type-level grammar. He interprets row extension then
as function composition: Suppose N denotes to a partial function f and M denotes
to the value m. Then the interpretation of {£> M, N} is the extension of f by the
singleton function mapping ¢ to m.

{{— m}of

By consequence of this interpretation, extending a row p by a label ¢ which is
already present in p overwrites the type to which ¢ maps. Hence, we should really
refer to Wand’s row extension as simultaneous extension and update. For example,
the following extension results in a record in which x maps to String rather than
Float (as we extend on the left).

12



{z>String, z>Float}

There are, of course, other ways to resolve the ambiguity introduced by label
overlap. We might just as well have chosen to

» overwrite from the right, rather than left (choosing Float over String, op-
posite to Wand [51]);

* report an error (as in Rémy [43]);

* introduce non-deterministic semantics (as considered, but prevented, by [45]);

* or even temporarily scope the type String over Float (as in Leijen [21]).

Rémy [43] asserts that row type systems may be distinguished by their choice of
free extension versus strict extension. In the former, extension of a row by a label
already present is well-defined; in the latter, it is not. Rémy’s system (discussed
next) follows the latter by way of presence polymorphism. Here it is not simply a
matter of taste—free extension in Wand’s system in fact introduced incompleteness
to the decidability of type inference [52].

3.1.4 Presence Polymorphism

To address incompleteness in Wand’s system, Rémy [43] introduces two presence
flags, Pre and Abs, which track (resp.) the presence or absence of labels in rows.

Type Variables 0
Types T = ..
Presence Types A ::= Abs |Pret |0
Presence types indicate whether a label is absent (Abs), present with type T

(Pret), or polymorphic in its presence (as type variable 6). To illustrate, we may
retype record selection as

Arord : TI({:Prea,p) — o

which states that, to select ¢ from record r, £ must be present in the input record’s
row. To resolve cases of label overlap,we may retype record extension as follows

Aar{lea,r} : a—TI({:Abs,p) = II({: Prea,p)

13



which forces ¢ to be absent from the input record. Record inputs which would incur
an overwrite of ¢ are now rejected as type errors. We may type record update, in
which an overwrite is to occur, as

o —TI(¢:Pref,p) = TI({: Prea,p),
which forces the input record to have the ¢ label present. We must introduce a new
record operation to inhabit this term.

Definition 6 (restriction). Record restriction, denoted r — ¢, describes the record
obtained by removing row (¢1>7) from record r.

Now we may type strict record update as:

Aar{lea,(r—120)}

To decide absence, Rémy presumes some finite enumeration of labels, as one
would expect at point of compilation. However, he does not give directly (or a
semantics lending itself easily to) an efficient compilation method, which Gaster
and Jones [11] sought to address.

3.2 Qualified Row Types

Gaster and Jones [11] frame absence polymorphism in the framework of qualified
types [17]. Qualified types generalize Haskell typeclasses [50]. For example, we
say that the type of the Haskell term sum

sum :: Num a => [a] -> Int

is qualified by the predicate Num a. The predicate is then (at runtime) interpreted
as evidence of its claim [39]—in this case, the predicate Num a claims that addition
is well-defined for type a, the type contained by the input list. In other words, the
predicate asserts the existence of the following infix operator

(#) (s a->a->a
for the runtime instantiation of a.

The relevant syntax necessary to add qualified types to a type system is given
below.

Types T == 1|Vo.1]...

14



The syntax Vo.7T denotes the quantification of type variable o over term 7. This
abstraction is routine for Hindley-Milner type systems and was heretofore done (by
Wand [51], Rémy [43], and us) implicitly. For continuity, we will continue to quan-
tify row and type variables implicitly when doing so adds no ambiguities. We write
T = T to type a term which has type 7 given the assumption of predicate z. This
notation is identical to Haskell typeclass qualification. However, base Haskell (as
implemented in GHC, its most prominent compiler compiler) restricts the shape of
predicates to just the language of typeclasses. Qualified type systems, as originally
proposed by Jones [18], generalize qualification to arbitrary predicates. Gaster and
Jones define in particular the lacks predicate, written p\ /, to denote that row p lacks
label 4.

Predicates 7 ::= (p\/) | ...

The lacks predicate replaces the presence flags of Rémy. The following types
strict record extension

(p\2)=Hp s a—TIl(z>a,p)

while the following types record update

(P\2) = B = I(z>0a,p) = I1(z>B,p).

Each of these types are inhabited by more or less equivalent terms to that of Rémy
[43] above.

Qualified type systems resolve predicate satisfaction as part of type checking. For
example, the following application extends the record {z>1,y>2} with z labeling
input n.

(AnpA{z>n,p})3{z>1,y>2}

Instantiating appropriately, the application incurs the constraint

(z>Float,y>Float)\z

15



which must be discharged for the term to type. Qualified type systems typically
model predicate verification as an entailment relation. We write

Pl Q

to denote that the predicate set P entails the predicate set (). (For convenience,
we often write P I- w and 7 IF @ in place of (resp.) P IF{x} and {n} IF Q.)
Entailment must be reflexive, transitive, and closed under substitution. Gaster and
Jones derives satisfaction of the lacks predicate in the direct and obvious fashion:
by row traversal. Particularly, we may derive that

* the empty row € lacks all labels, and
e the row ({1>1,p) lacks label ¢’ if £ # ¢" and p lacks /'

It is easy to verify using these rules that the predicate (z>Float,y>Float)\z is
entailed trivially.

Gaster and Jones [1 1] further offer both (i) a valid runtime semantics of rows and
the lacks predicate, and (ii) an efficient compilation scheme to this semantics. We
omit any material discussion of the semantics of this (or any) system in this report
so as to focus solely on static type systems.

This ends our discussion of what we term early row type systems. In the next
section, we shift our attention to more modern applications. All of the systems we
next discuss either (i) commit to a Rémy style of strict record and row extension
or (ii) are parametric over styles of extension. All systems, barring Leijen’s [21]
scoped row system, are also qualified type systems. Consequently, a disclaimer
should be given: sections 5 and 6 describe qualified type systems that, by default,
implement a Rémy-style of row extension. So, the features highlighted here will
recur, but should not be confused with ubiquity in row type systems writ large.

4 Modern Row Types

We now shift our attention to what we term modern row type systems. We demar-
cate modern (roughly 2000-2020) from early systems (1987-2000) not just tempo-
rally, but, perhaps more importantly, in that the each of the former address wider
problems than simple record and variant extensibility. So, here we see the appli-
cation of row type systems fan out to a broader reach. We first consider first-class
labels, which Leijen [21] shows to be remarkably expressive in a number of do-
mains.
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4.1 First-Class Labels

Labels have thus far not enjoyed first-class status: they may appear in rows (and
thus types and predicates), but not terms. Consequently, the behavior of a term may
not vary by the value of a particular label. It is easy to miss that record selection,
.4, and record extension, {¢>z, 1}, are in fact families of primitive functions pa-
rameterized by label. To demonstrate: what is the type of ¢ when £ is an explicit
parameter to record selection?

Arl.(r.0)

Type systems which can productively answer this question are said to have first-
class labels, meaning labels that may occur as terms in the term syntax. We describe
first-class labels in particular according to Leijen’s [20] presentation (although first-
class labels may in fact be attributed to Gaster and Jones [11] and Sulzmann [47]).
We introduce labels first at the kind level.

Kinds x = x|k —«k|L]..

All terms have types with kind %, including label terms. We include the ar-
row constructor so that we may type terms such as the label singleton constructor
below—we do not otherwise permit a type-level lambda. The syntax | _| denotes an
infix operator such that, for label £ : L, the application | /| has kind x and is therefore
inhabitable by a term.

-] L—x

It is now straightforward to type record selection with explicit label input.

Arl.(r.l) : (p\l)=M{>1,p)— |{| >

Expressing the rest of the record (and variant) primitives is routine.

First-class labels prove remarkably expressive, and may type some things that do
not often statically type at all. Label-inputted record selection (above) looks more
familiar in e.g. Javascript,

function (obj, 1) {

return obj[1]
}
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where the type error that occurs when obj lacks 1 is pushed to runtime. Leijen [20]
also describes how first-class labels can permit the encoding of intersection types,
object function overloading, and type-discriminative functions. First-class labels
are crucial in expressing the label-generic combinators of Rw (§6).

4.2 Scoped Rows

Rémy [43] opines that row type systems may be distinguished by their choice of
free or strict extension. All systems considered up to now (including Wand’s free
extension system) have identified labels uniquely with types. We have relatedly
assumed commutativity of row labels in rows—i.e., the rows (M >, N>0) and
(N>v,M>t) are de facto (or, with an appropriately defined equivalence relation,
de jure) equivalent. This needn’t be the case in other systems with free extension.
Leijen [21] describe a free extension system in which labels scope one another. We
call these scoped rows, which are a non-commutative row theory in which labels
need not uniquely identify types. By consequence, we resolve the access of dupli-
cate labels according to some order. Consider a record with both an x label mapped
to String and an x label mapped to Float.

r::I(z>String, z>Float,p)
r={z="foo",z =2.0}

In a scoped row system, the extension of row (z>Float,p) by row (z>String)
is well-defined, with the former out-scoping the latter. That is to say, we let r.z
access the left-most (i.e., most recently appended) attribute, yielding

r.x = "foo".

Additional z associations can be accessed by record restriction. Restriction in Lei-
jen’s scoped system strips the leftmost ¢ from its input . Consequently, we use the
order of label redundancies to guide their access.

(r—=z).c=2.0

Labels in this system cannot commute with themselves lest we are to lose this
ordering—Hence it is a non-commutative theory. However, do note that distinct
labels may freely commute, as we are concerned only with the access to duplicate
labels.

18



Leijen remarks that this system is quite straightforward to implement and can
“lead to new applications of records in practice.” This has become quite so in the
typing of algebraic effects [22, 23, 14], which are an approach to typing effectful
computation. This is a rich and active area of research; see Pretnar [42] for a proper
tutorial, and Leijen [22] for an example application of row types.

The next modern row type system is covered in enough depth to afford its own
section (as it is work from which stems the author’s).

5 ROSE

ROSE is a qualified type system that (like Leijen [20]) extends the system of Gaster
and Jones [11]. ROSE is novel in its account of row concatenation over row ex-
tension, the former being difficult to type safely (or at all [53]) and not described
by the works above. Under concatenation, ROSE observes that rows form a partial
monoid. This insight permits the generalization of row systems modulo monoidal
theories. In other words, ROSE captures the behavior of all the row theories de-
scribed above—Wand’s, Rémy’s, and scoped rows—Dby letting the predicate system
parametrically capture different monoidal theories.

5.1 Records By Concatenation

Existing approaches to typing record concatenation depend on fairly complex lan-
guage features, such as intersection types [53], disjoint polymorphism [54], and
dependent types [6]. In contrast, ROSE is able to type record extension with only
predicates and type qualification.

Records in ROSE are constructed by concatenation rather than extension. Corre-
spondingly, rows are constructed by combination, the row-level analogue of con-
catenation. We write

P1-P2~ P3

to denote that p; (left-) combined with p, equals p3. This forms a partial monoid
with €, the empty row, as identity. To illustrate, we expect all of the following
equations to hold.
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(z>Bool)-€ ~ (z>Bool)
€-(z>Bool) ~ (z1>Bool)
(z>Bool) - (y>Float) ~ (z>Bool,y>Float)

However, not all combinations need be defined—we permit the monoidal operation
to be partial, as we are not (always) quite sure what to do with operations such as
these.

(z>Bool) - (z>Bool)
(z>Bool)- (z>Float)

The syntax of rows and predicates of ROSE is given below. Combination may
express row extension: the row (£1>7,p) may equivalently be expressed by the
combination (¢1>7)-p ~ z, using the row variable z wherever one had prior used
(¢>7,p). Thus we remove extension from the syntax of rows.

Rows p = (I>1)
Predicates 7@ == p1 Sp2|p1-p2~p3|-.

We introduce the containment predicate, <, in addition to combination. Intu-
itively, the predicate p; < p, holds when the labels of p; are a subset of p;. The
combination predicate p; - p» ~ p3 holds when the concatenation of p; and p» is p3.
ROSE is parametric over the static and dynamic meaning of predicates, meaning we
cannot say that the descriptions given describe each predicate in full. However, for

purposes of illustration, we typically assume that predicates such as

(z>Int) < (z>Int,y>Int)
(z>Int)-(y>Int) ~ (z>Int,y>Int)

hold, but predicates such as
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(z>Int) < (y>Int,z>Float)
(z>Int)-(y>Int) ~ (2>Int)

do not. Observe finally some syntactic sugar in these examples—although we
have removed the row extension syntax ({7, p), we still used it to write e.g. (y>
Int,z>Float) in the predicate above. As described earlier, this may equivalent be
expressed as the conjunction of the predicates

(y>1Int)-(2>Float) ~p,(z>Int) <p

but the former is much easier to parse.

5.1.1 Typing primitives

Describing rows by concatenation changes the types and behaviors of the other
primitives. We introduce ROSE more formally by way of these changes. Excerpted
typing rules are given.

Record concatenation. The combination predicate in ROSE is in fact informed
by the typing of concatenation; that is, we include combination as a predicate firstly
so that we may concatenate records. Concatenation is typed as follows.

FI—MIle FI—NZsz FH—pl-pszg,
M+ N :Tlp;

This rule states that if M has type IIp;, N has type I1p,, and the combination of
p1 and p; is p3, then M H N has type I1ps. In other words, the concatenation of two
records is given by the row formed by the concatenation of their rows. The syntax
'l P denotes the entailment of P by typing environment I'; we let I" include both
predicate and typing assumptions, for convenience.

Labeled types. Rows in ROSE are either singletons or the combination of single-
tons. Due to the strength of its predicate system, ROSE is able to speak of rows only
by way of singletons and the empty row. Observe that, without singletons, the rule
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for record introduction is in fact ill-founded, as we presume terms M and N already
of record type. Singletons can be introduced at both record and variant type.

I'-M:t I'-M:z
I'c({eM):TI(l>t) THWUSM):E({>T)

Of course, a singleton variant and a singleton record are isomorphic, leading us
to define also the labeled type:

I'-M:z
I'E({>M): (>1)

These three types may be used interchangeably in ROSE.

Record projection. Just as concatenation extends record extension to the addi-
tion of zero or more fields, so should the inverse of concatenation extend record
restriction to the removal of zero or more fields. We call this projection, denoted
prj M.

FI—MZHPZ FH—pzSp]
I'-prjM : Ilp;

The rule states that we may project M : I1p, to type IIp; where p; may have less
labels than p;.

Record restriction. Restriction, as it is defined in other systems, can be expressed
immediately as a singleton case of projection. Note that, in a non-commutative
theory, one would expect two definitions of restriction—one for left restriction and
one for right. We give just the former.

Arprjr : ({>T)-pp~ pr=Tlpy, — Ip;

Record selection. Record selection asks for the value at label ¢ in record r. It is
simplest to define selection over the labeled type.

I'eM:({>1)
r'=Mtl:7
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Selecting ¢ from record r can be done by first projecting r to the labeled term
(f> M), given that (¢> M) : (¢>7) in p.

Ar.(prjr)l : (Ipt)Sp=Ip—>7

Simultaneous record update & extension. Most systems with strict extension
are forced to distinguish between record update and extension. ROSE is unique in
that it may express the two simultaneously—as done by Wand [51], but without the
resulting conflicts with decidability.

Art{l>t}+# (prir) mp2 Sp1=Ip = 1= I((l>7)-p2)

Consider each case. When r : I1p; lacks label ¢, then we may let p; equal py, as the
addition of / to p; is well-defined. In the case where /¢ is present, we project r to
the record without that label (that is, with type IIp;) so as to force the combination
({>17) - p2 to be well-defined.

Variant injection. Variants are introduced by injection of smaller variants rather
than by cases.

Fl—M:Zpl F“—pl prz
inj M : Xp;

Variant introduction is not particularly noteworthy, as we need only select one
case, and so M : ¥p; may always be a singleton variant. In other words, injection in
this fashion is not too dissimilar from injection as it has previously been described.

Variant branching. More interesting is variant destruction, which is dual to record
introduction. Recall that we introduce a record of type I1(p; - p2) by concatenating
a record of type I1p; with a record of type I1p,. Dually, suppose we have handlers
M :¥p; — tand N : Xp, — 7. Then one would expect to be able to compose the
two into a handler of p; - p;. This is exactly the elimination rule for variants.

'M:Xpy—7 TEN:Xpp—7 T'lFpr-p2~p3
I'EMVN :2p3 =1

We call V a branching operator.
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5.1.2 Typing Wand’s Problem

Record concatenation has proven challenging for good reason. Wand [53] first
considered record concatenation to model multi-object inheritance, but was only
able to show principal type inference modulo sets of most general types.* Wand
offers this term to demonstrate the challenge.

Amn.(m-+n).l

This term concatenates records m and n and projects out the value at label /.
This corresponds to the multi-inheritance problem of object-oriented languages,
i.e., when one object inherits from two parents whose fields may have non-trivial
intersection. This is a tricky problem that leads Java to restrict multi-inheritance
strictly to interfaces and not classes [37].

What makes this term difficult to type? We want to assert that ¢ is present in at
least one of m or n for this term to be well-defined. However, specifying precisely
which one over-specifies the behavior of the function. Rose types this term by using
the containment predicate to stipulate that (i) the concatenation is well-defined and
(i1) the label £ occurs in the result of the concatenation.

(P1-p2~p3,({>1T) Sp3) = pr = TMpp =7

The predicates p; - p2 ~ p3 and (£>7) < p3 qualify the type with the assumptions
that (i) and (i1) hold, respectively.

5.2 Generalization Over Row Theories

ROSE is parametric over row theories. We have used the term row theory intuitively
to describe how a row type theory resolves label overlaps. We have seen a handful
of different row theories under this informal definition, e.g.

* Wand’s [51] free extension system, in which label overlaps are overwritten;

* Rémy’s [43] strict extension system, in which label overlaps incur a type
error; and

* Leijen’s [21] free extension system, in which label overlaps are scoped.

“Wand’s approach in [53] would more accurately be described as the use of intersection types
by today’s parlance.
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A formal definition should tell us what rows are in a particular row theory, for
which rows is combination well defined, and what those combinations equal. We
formalize row theories according to this specification.

5.2.1 Row Theories, Algebras, and Models
Definition 7 (Row theory). A row theory is a 3-tuple (R, ~,IF) such that

* R is a set of syntactic rows (that is, of well-formed ground row type expres-
sions) including at least the empty row;

* The relation ~ is an equivalence relation on R, identifying syntactically dis-
tinct rows;

* | is an entailment relation on the row predicates p; <y p2 and py - p2 ~ p3,
invariant with respect to ~, satisfying reflexivity, transitivity and at minimum
the following rules

ClEpi-p2~ps  LlEpi-p2~ps
LlEp1r S ps L'lEp2 Sk p3

which relate combination to (left and right) containment.

The first two components describe what rows are in a row type system; the third
component must say which equations of the form p; - p» ~ p3 can be entailed. In
other words, the entailment relation must tell us which combinations are defined
and what they equal. Note that the predicate for containment is now directed by
d € {L, R} to permit non-commutative theories. The rules above specify that p; -
p2 ~ p3 entails that p; <7< p3 and pr g p3; these are necessary to give a monoidal
denotation of rows.

All of the type theories we have discussed can be abstracted to row theories. We
give the most common example: a commutative theory of concrete rows in which
the concatenation of overlapping labels is ill-defined. This abstracts the behavior of
e.g. Rémy’s [43] system with strict extension. We call this example the simple row
theory.

Example 8 (Simple row theory). The simple row theory is defined as (Rsimp, ~simp
,|Fsimp), Where

* Rsimp 18 the set of uniquely-labeled sequences of types; or, the least set gen-
erated by the row grammar

R == ({>1,R)|€

* ~gipp identifies rows up to permutation; and
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* IFsimp is defined by the following inference rules:

{ti>1),.c >t} ST, 0> T}

Clrgimp (U1DT1, s b > Tin) S (0D 77,0, 0, > T5,)

~Y

{livt, > T W {1 > T s oo A D T } = {) > 70, 4, > T )

L lrgimpr (41> Tty b T) - (L1 B Th 1 oo b > Tin) ~ (071,00 £, > T

which state that (1) p; is contained in p; if each of the components in p; are
in P2, and (i1) pg - P2 is equivalent to p3 if the disjoint sum of p; and p; is
equal to p3.

Row theories are modeled by partial monoids, which we call row algebras. This
denotation validates the claim that row theories are monoidal in structure.

Definition 9 (row algebra). A row algebra is any partial monoid (M, -, €); that
is, - is a partial binary operator M x M — M such that m-€ = m = €-m, and
my - (mp - m3) = (my - my) - m3 whenever my - (my - m3) is well-defined.

Definition 10 (row model). Let f : R — M; we write

* [IFpr-p2~p3if f(p1)-f(p2) = f(p3);

» fIFp1 St psif there exists p, € R such that f(p1) - f(p2) = f(p3);

o fIF pa <g p; if there exists p; € R such that f(py) - f(p2) = f(p3); and
o fIF Pif f I & for all predicates 7 in P.

We say f is a model of row theory (R, ~,IF) in row algebra (M-, €) if

» for all rows p1,p2 € R, if p1 ~ py then f(p1) = f(p2);

e If I' I &, then for each substitution 8 well-defined on the free variables of I
and m, if f IF 6T then f I 67; and

* there is some pp € R such that f(pg) = €.

We can interpret the simple row theory in the expected manner as partial label-
to-type mappings.

Example 11 (simple row algebra). Let £ denote a set of labels, 7 denote a set of
syntactically valid types, and consider partial functions f, ¢ : £ — 7. We define a
partial union f LI g by

f(¢) if¢ € dom(f)
(fug))=A g(¢) if¢ € dom(g)
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if dom(f) and dom(g) are disjoint and undefined otherwise. (£ — 7 ,LJ,0) gives
a row algebra for the simple row theory by the following model.

flp)={f— 1} for(l>T)Ep

The simple row algebra is also a model for various row calculi with strict extension,
e.g. Gaster and Jones [11], Chlipala [6] and Harper and Pierce [13].

5.2.2 Rows, By Any Other Name

The argument that ROSE in fact generalizes modulo row theories is evident in the
parametricity of its syntax and typing. For row theory (R,~,IF), we let rows be
determined according to membership in R and record and variant types be syntac-
tically valid only for { € R:

Rows (€R
Types tu=t|t— 1|l |XL|I>T

The instantiation of |- is done directly within typing. ROSE is only parameterized by
row theories, meaning just its static semantics. We do not in turn parameterize the
semantics of each by row algebra. Algebras serve more to (i) confirm our intuition
that row theories are monoidal and (ii) show that syntactically distinct row theories
may be modeled the same. Morris and McKinna [34] also show that some row
algebras may be homomorphic with one another—in particular, we may inject from
less expressive row algebras (e.g. the simple row theory) to more expressive (e.g.
the scoped row theory).

6 Row

R extends ROSE with support for generic programming over rows via first-class
labels and higher-order row quantification. The extension of ROSE to R® is analo-
gous to the extension of System F' to System /'@ (hence the name). R is by far the
most expressive of row theories presented; this section will motivate the novelties
of Rw before formally introducing the calculus.
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6.1 Generic Programming With Extensible Data Types

We should clarify that by generic programming we mean datatype-generic, viewing
records and variants as the fundamental organizations of data. Let us demonstrate
with an example; consider the Eq typeclass of Haskell.

class Eq where
(==) :: a ->a -> Bool

If a variant Xp satisfies the predicate Eq Yp, we should expect an instantiation of
(==) with type £p — Xp — Bool. Now, suppose we have a record of instantiations
for each (¢>7) in £p. Can we produce an instantiation for £p? Such a function
should have the following type

I(eq p) = eq(Zp)

where eq = Az.z — x — Bool is a type operator and eq p lifts the type application
pointwise to rows. To illustrate, suppose p consists of boolean cases T: T and F: T.
Then I1(eg p) is equal to

II(T: T— T —Bool,F: T — T — Bool).

(Let () : T denote the unit term and type, respectively.) The dual, Ep, represents
more familiarly the boolean type.> If this is the case—that is, if the record consists
of a finite quantity of known handlers—then the corresponding variant handler may
be defined in ROSE as follows.

Arvw.(Az.(Ay.(r.T)zy)V(A_False))V
(Az.(Ay.(r.F)zy)V(A_False))

The term above uses the record of handlers d to discriminate on variants v and w. In
the case that both variants are of the same case, we simply apply the case’s handler;
when the cases differ, we return False. This term in fact could apply to smaller
variants, i.e, those with only one case; the type (7> T, F'>T) denotes the greater
bound of each. We can express this as the type

Vo S(TeT) (FoT)=(eqz) — eq(X2).

SFor simplicity, assume the type Bool with constructors True and False to be primitive and
distinct from the variant in discussion.
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where z is constrained in the containment predicate to just those rows which inject
into (7>T)-(F>T). Hubers and Morris [15] ask: can this term be expressed
generically—that is, over an unconstrainted z?

VzIl(eqz) — eq(Xz)

The authors answer in the affirmative with two novel (and dual) primitives, syn
and ana, which lift label-generic operations over records and variants.

6.2 Witnessing the Duality of Records and Variants

The primitive syn is used to generically synthesize records; the primitive ana is
used to generically analyze variants. This section introduces the primitives itera-
tively, starting with simpler examples than that just described; rather than a record
of boolean comparators, we will consider a record of unary operators. Suppose we
have such a record, with type

(p — 1)

where p — 7 denotes the arrow constructor lifted over row kind. For example, if
p=(T:T,F:T)then p — T denotes

(T:T—1,F:T—n1)

The task is to transform this record of handlers into a variant eliminator, i.e., to
inhabit the type below.

reflect:Il(p — 1) > Xp — 1.

Intuitively, for inputs d : II(p — 7) and v : £p, we would like to perform a case
distinction on the input v and apply the correspondingly labeled handler in d—
that is, we seek a sort of uniform case distinction on all cases in v. This can be
performed by the ana combinator. We give our first typing of ana below as the rule
(T-anay).

'Ep:R* TEM:Vi:Liu:x.(lpu)Sp= |l mu—7

(T-anayp)
I'FanaM :Xp— 71
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The judgment I' - p : R* simply states that p is a row variable inhabited by types
with % kinds; we will describe R@’s higher order row quantification in the next
subsection. More interesting is the body M ; Let us dissect this more closely. Rw
commits to first class labels with kind L, so the first input / : L is a universally
quantified label variable. Labels may be converted to star kind identically to as
described in §4.1. The predicate ({>u) < p says that the p in question contains
the case ¢ labeling type u : . This label and type are first-class arguments to M,
which is then tasked with proving a 7 value. In short, the body of anaM produces
(uniformly) a T from each component in p. ana is used below to inhabit record
reflection

Adw.ana(Alu.seldlu)w : I(p - 1) = Xp — 7.

where the helper sel is defined as A7{.(prjr).l, exactly as we did in §5.1.1 except
with the label input / : L now first-class. The body of ana thus selects the handler at
label [ and applies it to the row contents u to get a value at type 7. This combinator
is generic in that we destruct the variant v generically, i.e., without respect to its
particular labels.

The reflect function naturally has a dual, which we call reify.

reify: (Zp — 1) = II(p — 1)
reify = Af.syn(Alz.conlx)

The helper con constructs a variant at label [ and value z; it may be defined
as Alz.inj(I>z), identically defined as in §5.1.1. The dual reify abstracts the
case handlers from a variant eliminator f. The primitive syn is a dual to ana: ana
generically destructs a variant, and so syn generically constructs a record. Our first
typing of it is given below as (T-syny).

I'kp:R* TEM:Vi:Liu:x(lpu)Sp=[l] —u
['+syn M :Tlp

(T-syny)

The body of syn differs slightly from that of ana, as the latter destructs and the
former constructs. Correspondingly, the body of syn is given a label and expected
to construct a term at type u. We can thus think of syn as the production of a record
from a uniform uniform treatment of its components.
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These definitions capture the intention of each combinator. In practice, however,
we found that typing more interesting terms required some additional complexity.
We describe changes thereof in the following two subsections.

6.3 Lifting Functorality

Let us thus consider typing a map function. In particular, consider a type-preserving
map over the components of p in a record of type I1p:

mappy : Vp :R*.(Vi:Liu:*.(I>u) Sp=|l] 5 u—u)—Ip —Tlp

The type of the input function, (VI:L,u:*.(I>w) S 2= |l = v — u) is sim-
ply the type of the body of ana M when the component type, u, is preserved. As
expected, we populate the type via the syn combinator.

mapy = Af r.syn (Al fl(selrl))

Intuitively, this term applies the transformation f at each component of r to build
a new record of the same type. Critically, f is type-preserving; when it is type-
transforming, it becomes unclear what type this term should return.

mapp Vo :R*.(Vi:Liu:x.(I>u) Sp=|l] > u—1) = p =117

Try to populate the question mark with a valid type. The input r : IIp has now
had the types of its components each changed; thus the row itself p is likewise
transformed. So, intuitively, we would like to express precisely this—a type-level
transformation of p. In other words, we must introduce a higher order transforma-
tion component (¢ below) to transform the contents of p. A new typing rule for syn
is given below. Changes are highlighted.

I'Fp:R¥ TEo:k—=* THFM:Vi:Liu:x.(Ipu)Sp= |l —0du
Fl—syn¢M:H(¢p)

(T-syn,)
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Firstly, observe the higher order row quantification of p. The syntax p : R* de-
notes that p is a row of types (and type constructors) with kind x. This is a novel
feature of Rw. Further, and as described at the start of this section, type construc-
tors may be lifted component-wise over rows, and, dually, rows of type constructors
may be given types as arguments. We make use of both of these capabilities in typ-
ing syn. The type constructor ¢ : Kk — * accepts an input of kind k and returns a
type at kind . This means that ¢ may (i) transform, at the type level, the row p into
a row of types, and (ii) transform each component of p into types. This is expressed
by the body of syn, which is expected to create a term at type ¢« for each u : K in

p.

To illustrate the desired type-transforming map behavior, we may simplify things
slightly. Suppose that p is a row of types at kind * and that f : x — % is a unary type
constructor. This is the case, for example, of a transformation which might take an
input of integers and map to an output of lists of integers.

mapp Vo R fix=*.(lvu) Sp= ([l 2u=fu) - U(p) = I(fp)

Changes to the original type are shaded. The term definition is omitted—it is in fact
identical to the type-preserving case, disregarding some housekeeping to do with
types and type constructor inputs. The shaded change simply implements what is
described above—we transform the type of both p and its components.

6.4 Comparing Records and Variants

We return to our original example—variant comparison—to illustrate the final change
to the combinators. Recall that, for input record IIp, we wish to compare the vari-
ants v and w of type Xp. That is, we wish to inhabit the following type with
something like the term below. Note that we do not perform a type transformation
and therefore let ¢ : kK — x be the identity function. Hence ana looks and behaves
as it did in §6.2.

eqy : Vz:R*II(eqz) — Xz — Xz — Bool
eqz = Advw.ana(Aly.)w

To populate the term, we must consider two cases: if v and w are constructed
with the same label, we compare them with the comparator in d; if not, we return
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False (we cannot compare terms of different type). This is the same logic that
we stipulated at the start of the section, and can be implemented fairly straight-
forwardly. Firstly, we know we would like to branch on these cases via V, the
branching operator.

eqy : Vz.Il(eqz) — £z — Xz — Bool
eqr = Advw.ana(Aly.(casel(Az.seldlzy) vV (Az.False))v)w

Each side of the branching operator is shaded for visual aid. The left side handles
the case when the types are the same; the right side handles the case where they
differ. Let us dissect the left side. The case operator is much the same as described
in Definition 5 but destructs only singleton variants. Like sel, It is easily derivable
in Ro.

case :Vi:Lt:xuik. [l = (t = u) = E(l>t) = u
case = Alfz.f(x.0)

caself constructs a handler (whose behavior is given by f) for the variant con-
structed with label /. So, within eqy, the subterm (casel(Az.seld [z y)) describes
a handler for the given label [ that then selects the [-labeled handler in d and uses
it to compare z and y, which are of the same type. The right side, (Az.False)),
is the constant function returning False. This behavior is as specified. This term
seems reasonable but, unfortunately, does not type check.

The difficulty is in type checking the branching operator. Recall that, for M :
IIp; — 7 and N : I1p, — 7, the branching operator M V N is well typed at type
Yp3 — 7 only if we can derive that p; - py ~ p3 (refer to §5.1.1 for full rule). In
effect, this is to say that we must know the totality of cases. However, in typing eqy,
we do not have this totality; within the body of ana, we have only the assumption
that (< ¢>u)p. In short: we need evidence of combination, not containment. Hence
we strengthen® the type of the bodies of ana and syn. We give the new rule for ana
below (changes highlighted).

'p:R* ThH¢:x—* THEM:Vi:Lu:x,y:RE(Ibu)@y~p=|l] >ou—7
I'Fanag M :X(¢pp)— 7

(T-anaj)

6Strength here refers, as usual, to implication—and indeed, combination implies containment in
both ROSE and Rw.
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We have strengthened the body of ana by replacing (shaded) the weaker contain-
ment predicate, (/>u) < p, with the stronger combination predicate, (I>u)®y ~ p.
The term eqy has the evidence it needs now to type. Along nearly dual lines, we
can similarly construct a record comparator.

Vz:R*Il(eqz) — 1z — 1z — Bool

But to inhabit this term we need one additional primitive for label-generic folding.
Describing this primitive does not convey much new, and is thus omitted; see §3.4
of the paper [15] for a full definition.

This section has demonstrated label-generic programming in R@; we next discuss
some additional features that have been omitted.

6.5 Other Novelties of Rw

We have described two novelties of Row—that is, higher-ordered rows and the com-
binators described above. To conclude this section, we summarize some omitted
contributions of the work cited.

* Like ROSE, Rw is parametric over row theories. This is done slightly differently—
we require a more involved definition of row theory—but is implemented
similarly by parameterizing the syntax and typing rules of R@w. Hubers and
Morris [15] give example implementations of the simple and scoped row the-
ories, among others.

* Rw, like System Fw, is an impredicative system. The authors give a universe
stratification of R® so that it may denote into a predicative system.

* The authors denote Rw into the index calculus, which is effectively a DSL
interpreted in Agda. This is a shallow embedding. Importantly, and by con-
sequence of the totality of Agda, we show R® to be type safe—that is, if a
term statically types at type 7T then its denotation will inhabit the denotation
of 7. As the semantics is denotational, not operational, we defer to a defini-
tion of type safety as defined by Milner [31] rather than the typical progress
and preservation lemmas that accompany many operational semantics.
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7 Conclusion

7.1 Other row type systems

We have described the evolution of row type systems from Wand [51] and Rémy
[43] to Hubers and Morris [15]. Along the way, we saw a handful of other row
type theories and summarized their (lasting) contributions. We, of course, have
omitted some other styles and interesting features. Most notable is perhaps Chli-
pala’s [6] web programming language, Ur, which is (like Rw) based on System
Fw, and supports type-level operations over rows and row and record concatena-
tion with first-class labels. However, it does not support extensible variants. Other
novel applications of rows include: Makholm and Wells’s [28] system for first-
class mixins; Hillerstrom and Lindley’s system for extensible effects [14]; Lindley
and Cheney’s [25] type system for effect polymorphism; and Lindley and Morris’s
[26] type system for extensible session types. There are also some omitted novel
language features—notably, there is a fairly rich body of literature on dependent
records [27, 41], in which the types of record fields are successively dependent
upon the terms of fields defined before them.

7.2 Other approaches

The expression problem, with respect to datatype extensiblity, is by now quite sat-
urated with solutions [56]—row types not even chief among them. The dual direc-
tion, structural typing of objects, is even more well-trodden ground. We conclude
with a summary of alternative proposed solutions to these problems.

Subtyping. Subtyping is the most widely adopted techniques for building type
systems with records and variants [3, 16, 46, 36, 58, 38]. Mitchell [32] first intro-
duced a subtyping relation as denoting implicit coercions from one type to another:
given types A and B, the subtyping relation A < B states that we may coerce from
type A to B. Itis natural to consider then coercions from records with more fields to
less fields (projection) and from variants with less fields to more fields (injection).
Observe that this relationship is monotone for variants and antitone for records. For
variants v; and records r;,
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In contrast, containment is expressed on rows, which inhabit terms indirectly via
type constructors IT and X. Containment is thus strictly monotone: For rows p; and

P2,

p1 < p2 :=dom(p;) C dom(p,)

and we have instead the following explicit coercions.

prj:p1 < p2=1lpy — Ilpy
injup1r <p2=Xp1 = Xp2

It has long been known that inheritance is not subtyping [7]. Row containment
thus gives a more limited (but tamed) account of inheritance.

Bounded quantification. Bounded quantification [4, 5, 9] addresses the interac-
tion between parametric polymorphism and subtyping by allowing the restriction
of type variables by upper bounds. For example, the type

VX.X <Int.T

bounds instantiations of X to just the subtypes of Int. This additional expressiv-
ity comes with its own limits. Bounded subtyping in System [F'< (System /' with
bounded second-order polymorphism) is known to be undecidable [40], although
there has been some recent progress on taming this interaction [57].

Constrained quantification. We describe in §5 that concatenation can prove dif-
ficult to type. One intuitive approach to ensuring the safety of concatenation is
to constrain the input records to have disjoint label sets, as originally proposed by
Harper and Pierce [13]. A system with constrained quantification can type concate-
nation as

V(X#0).(Y#X)X > Y > X ||V

where (Y#X) asserts that X is disjoint from Y and the type X || Y denotes the
concatenation of X and Y. Committing to such a constraint necessarily fixes your
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row theory to one in which labels identify types uniquely, and so is not suitable
for all theories (e.g., scoped rows). For this reason, ROSE and R® more generally
qualify types with the stipulation that concatenation simply be well-defined for the
instantiated row theory.

intersection types & the merge operator. Subtyping and bounded quantification
lift notions of containment to arbitrary types; the merge operator, commonly writ-
ten as two commas (,, ), lifts the notion of concatenation to arbitrary types. The
merge operator permits the merger of arbitrary terms into an intersection type. The
intersection of types A an B is denoted (in these systems) as A& B. Intersection
here means that this term behaves as both Int and Bool, and not, as is also com-
mon [8], that it inhabits the (set theoretic) intersection of Bool and Int. The merge
operator has received an influx of attention in recent years [54, 55, 45], no doubt
in part due to its presence in many popular gradually typed systems, e.g., as union
types in TypeScript [30] and intersection types in Scala [19]. In the case of records,
merger is simply concatenation.

{z:Int},,{y:Int} ={z: Int,y: Int}

More interesting is the merger of arbitrary types. The term below is in fact well-
typed at Int: when x is of type Bool, the conditional will trigger and 1 is returned;
when x is of type Int, then x is returned.

A(z :Int&Bool).if z then 1| else z

The merge operator can be used to encode extensible data types through a paradigm
called compositionanl programming [2, 45].

Disjoint polymorphism. Left unrestricted, the merge operator can quickly lead to
non-determinism. Consider the term if true ,, false then y else Y. The
“unwieldly beast” [45], however, may be tamed by disjoint polymorphism—that is,
to lift the idea of disjointedness of records to arbitrary type. Disjoint polymorphism
constrains the merger of types with non-trivial intersection of terms. In the case of
records, this is simply the constrained quantification of Harper and Pierce [13]. For
arbitrary types, disjointedness constraints can rule out non-deterministic merges.
For example, the merger true ,, false will not type, as the types of each term
(both typed Boo1l) are not disjoint.
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Aspects of both row polymorphism and bounded polymorphism can be shown to
elaborated into systems with disjoint polymorphism [54].

Functorial encodings of extensible variants. Records and variants have a well
known categorical semantics as polynomial functors [10]. Consequently, languages
with (general) recursion that are capable of expressing functors as type operators
(e.g., Haskell or OCaml) may encode variants. This approach was widely popular-
ized by Swierstra [48], and may often be referred to simply as the “datatypes a la
Carte” approach. The encoding relies on Haskell’s typeclass system to, in essence,
encode the containment and combination relations of ROSE, lifted to functors.

While particularly clever, this embedding has both technical and ergonomic lim-
itations. In practice, GHC’s typeclass resolution does not reason about polynomial
functors with respect to their monoidal structure—that is, functors which are equiv-
alent modulo associativity and commutativity are not considered equal. So, we
cannot conclude during typeclass resolution that the functor F':+: G is contained
by G:+: F, despite the two being isomorphic and containment being reflexive. Nor
can we conclude that (F':+: G):+: H is contained in F':+:(G : +: H)! Attempts
have been made around this, e.g., by way of closed type families and instance chains
[33], however the work cited concludes that functorial encodings may be too elabo-
rate to ever be ergonomically viable. If anything, the work shows that any functorial
encoding of extensible variants must reason modulo algebraic structure, which (this
author argues) is best done in the type theory itself.
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