
Translating the Yoneda Lemma

Alex Hubers

1 The Yoneda Lemma, as stated

The Yoneda Lemma, arguably the “most important result in category theory”

Riehl (2017), has for many (me) been a consistent drop off point on the summit

of mount category theory. I write this note to argue that, to the functional

programmer, the Yoneda Lemma can be put a bit more clearly if one simply

relaxes a handful of notational (and, cough, foundational) conventions.

Lemma (Yoneda (covariant)). Let C be a locally small category and F : C → Set

be a covariant functor. Then

Hom(Hom(A,−), F ) ≃ F (A)

for all objects A in C.

In English: the set of natural transformations from the covariant hom-functor

Hom(A,−) to F are in bijection with the set F (A). When F is contravariant,

the Yoneda lemma relates F to set of natural transformations between F and

the contravariant Hom-functor Hom(−, A).

Lemma (Yoneda (contravariant)). Let C be a locally small category and F :

Cop → Set be a contravariant functor. Then

Hom(Hom(−, A), F ) ≃ F (A)

1



for all objects A in C.

1.1 The Yoneda Lemma for dummies the functional programmar

Let us now take a dollop of notational (ahem, foundational) liberties.

To the functional programmer, a natural transformation “is just”1 a parametrically

polymorphic function of type

forall x. f x -> g x

for functors F and G. Abusing further liberties, the “hom set” of arrows

between A and B—written Hom(A,B)—is “just” the type A → B. Likewise,

the covariant hom-functor Hom(A,−) can be written as the type level functor:

type Hom x = a -> x

That is: the covariant hom-functor sends types X to the set of functions into

X from A. Putting one and one together, the set of natural transformations

between Hom(A,−) and F , or Hom(Hom(A,−), F ), is just the type:

forall x. (a -> x) -> f x

and so the Yoneda lemma asserts that this type is in bijection with the type

f a.

forall x. (a -> x) -> f x

≃

f a

That this bijection holds can be witnessed in a single line of Haskell. Look:

1This verbiage may be attributed to Kartik.



newtype Yo f a = Yo { unYo :: forall x. (a -> x) -> f x }

Proof. The bijection can be witnessed easily. Let

f :: (forall x. (a -> x) -> f x) -> f a

f ϕ = ϕ a id

g :: Functor f => f a -> (forall x. (a -> x) -> f x)

g d r = fmap r d

You may check yourself that the two functions are in fact inverse.

As a further exercise, prove the Yoneda lemma when F is covariant. (Hint:

replace the hom functor type Hom x = a -> x with the contravariant hom

functor type HomC x = x -> a and see that the proof is identical. The definition

of g pans out to be the same: f is contravariant and hence sends the arrow

r :: x -> a to fmap r :: f a -> f x).

1.2 Mendler-Algebras and Yoneda

Let f be a convariant endofunctor, fix a type a and define the contravariant

endofunctor g as

type g x = f x -> a

By the contravariant Yoneda lemma, we should expect a bijection between

forall x. (x -> a) -> g x and g a. That is:

forall x. (x -> a) -> g x

= forall x. (x -> a) -> f x -> a

≃ g a

= f a -> a



In other words, mendler F-algebras and regular-ass F-algebras are in bijection.

References

E. Riehl. Category theory in context. Aurora: Dover modern math originals.

Dover Publications, 2017. ISBN 978-0-486-82080-4.


