Translating the Yoneda Lemma

Alex Hubers

1 The Yoneda Lemma, as stated

The Yoneda Lemma, arguably the "most important result in category theory" Riehl (2017), has for many (me) been a consistent drop off point on the summit of mount category theory. I write this note to argue that, to the functional programmer, the Yoneda Lemma can be put a bit more clearly if one simply relaxes a handful of notational (and, cough, foundational) conventions.

Lemma (Yoneda (covariant)). Let C be a locally small category and $F : C \to \mathbf{Set}$ be a covariant functor. Then

$$
Hom(Hom(A, -), F) \simeq F(A)
$$

for all objects A in C.

In English: the set of natural transformations from the covariant hom-functor Hom $(A, -)$ to F are in bijection with the set $F(A)$. When F is contravariant, the Yoneda lemma relates F to set of natural transformations between F and the contravariant Hom-functor Hom $(-, A)$.

Lemma (Yoneda (contravariant)). Let C be a locally small category and F : $\mathcal{C}^{\text{op}} \to \text{Set}$ be a contravariant functor. Then

$$
Hom(Hom(-, A), F) \simeq F(A)
$$

for all objects A in C.

1.1 The Yoneda Lemma for dummies the functional programmar

Let us now take a dollop of notational (ahem, foundational) liberties.

To the functional programmer, a natural transformation "is just"¹ a parametrically polymorphic function of type

```
forall x. f x \rightarrow g x
```
for functors F and G . Abusing further liberties, the "hom set" of arrows between A and B—written $Hom(A, B)$ —is "just" the type $A \rightarrow B$. Likewise, the covariant hom-functor $Hom(A, -)$ can be written as the type level functor:

type Hom $x = a \rightarrow x$

That is: the covariant hom-functor sends types X to the set of functions into X from A. Putting one and one together, the set of natural transformations between $Hom(A, -)$ and F, or $Hom(Hom(A, -), F)$, is just the type:

forall x. $(a \rightarrow x) \rightarrow f x$

and so the Yoneda lemma asserts that this type is in bijection with the type f a.

forall x. $(a \rightarrow x) \rightarrow f x$ ≃ f a

That this bijection holds can be witnessed in a single line of Haskell. Look:

¹This verbiage may be attributed to Kartik.

newtype Yo f a = Yo { unYo :: forall x. $(a \rightarrow x) \rightarrow f x$ }

Proof. The bijection can be witnessed easily. Let

```
f :: (forall x. (a \rightarrow x) \rightarrow f(x) \rightarrow f(a)f \phi = \phi a id
g :: Functor f \Rightarrow f a \rightarrow (forall x. (a \rightarrow x) \rightarrow f x)
g d r = fmap r d
```
You may check yourself that the two functions are in fact inverse.

As a further exercise, prove the Yoneda lemma when F is covariant. (Hint: replace the hom functor type Hom $x = a \rightarrow x$ with the contravariant hom functor type HomC $x = x \rightarrow a$ and see that the proof is identical. The definition of g pans out to be the same: f is contravariant and hence sends the arrow $r :: x \rightarrow a$ to fmap $r :: f a \rightarrow f x$).

1.2 Mendler-Algebras and Yoneda

Let f be a convariant endofunctor, fix a type a and define the contravariant endofunctor g as

type $g x = f x \rightarrow a$

By the contravariant Yoneda lemma, we should expect a bijection between for all $x.$ $(x \rightarrow a) \rightarrow g x$ and $g a.$ That is:

forall x. $(x \rightarrow a) \rightarrow g x$ $=$ forall x. $(x \rightarrow a) \rightarrow f x \rightarrow a$ ≃ g a $= f a \rightarrow a$

 \Box

In other words, mendler F-algebras and regular-ass F-algebras are in bijection.

References

E. Riehl. Category theory in context. Aurora: Dover modern math originals. Dover Publications, 2017. ISBN 978-0-486-82080-4.