
CSC 341—7. Undecidable Proof Strategies

Undecidable Proof Strategies

So far, we have learned about undecidability and the reduction technique which allows us to show that a
problem is solvable given another problem. In this unit, we use reductions to establish that one problem
is undecidable by showing that it reduces to another problem known to be undecidable. We have some
intuition of what a reduction is—solving the second problem by using a helper function that solves the first
problem. However, it is not straightforward to map that intuition into a strategy for building reducibility
proofs. In this reading, I outline a particular strategy for developing these proofs so that they are less
magical and more mechanical.

An Example Reduction

Consider the following language:

𝐴 = {⟨𝑀⟩ ∣ 𝑀 is a TM and 𝐿(𝑀) = 𝛴∗}

To prove that this language is undecidable, we will reduce a known, undecidable language to it. A common
choice that we’ll use for this problem is 𝐴TM:

𝐴TM = {⟨𝑀, 𝑤⟩ ∣ 𝑀 is a TM and 𝑀 accepts 𝑤}

Thus our goal is to show that 𝐴TM ≤ 𝐴, that is, 𝐴TM is reducible to 𝐴.
Recall that (mapping) reducibility says that to establish this fact, we need to create a function 𝑓 that

maps a string 𝑤 in 𝐴TM to a string in 𝐴 such that:

1. 𝑓 itself is decidable (i.e., never goes into an infinite loop on any input) and

2. 𝑤 ∈ 𝐴TM ⟺ 𝑓(𝑤) ∈ 𝐴

𝐴TM accepts TM descriptions and inputs ⟨𝑀, 𝑥⟩ and𝐴 accepts TM descriptions ⟨𝑀⟩. Therefore, our function
can be written as 𝑓 (⟨𝑀, 𝑤⟩) = ⟨𝑀′⟩ where:

𝑀 accepts 𝑤 ⟺ 𝐿(𝑀′) = 𝛴∗.

Note that all we need to do is create this function 𝑓 to complete the proof. This is because we are using 𝑓 in
a standard way to build a decider for 𝐴TM given a decider 𝐷 for 𝐴:

𝐷𝑓
⟨𝑀′⟩

⟨𝑀, 𝑤⟩

Our decider for 𝐴TM, the outer-most box, proceeds by transforming its input using 𝑓 and then runs that
output through 𝐷. The decider then outputs whatever 𝐷 outputs. This decides 𝐴TM but is a contradiction
because we know 𝐴TM is not decidable. Therefore, we can conclude that 𝐷 must not exist, i.e., 𝐴 is not
decidable. For more complex problems, we will need to generalize this construction so that the contents of
the decider for 𝐴TM is arbitrary (given 𝐷), but for now, this simple form of a reduction is sufficient for our
purposes.

Now, our proof consists of constructing 𝑓 with the two properties listed above. To do so, I find it best to
operate in three steps:

1 This work is licensed under a “CC BY-NC-SA 4.0” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


CSC 341—7. Undecidable Proof Strategies

1. As a starting point, build a TM 𝑃 that it obeys the right-hand side of the biconditional and a TM 𝑄
that does not obey this property. We will base 𝑀′ off of the behavior of these target TMs.

2. Next, construct 𝑀′, the output of 𝑓, that conditionally acts like 𝑃 if the left-hand side of the bicondi-
tional is true and 𝑄 if the left-hand side of the biconditional is false.

3. Verify that this 𝑀′ fully obeys the two conditions of mapping reducibility.

For simple reducibility proofs, this construction strategy allows us to quickly build an appropriate mapping
function 𝑓. More complicated proofs will require additional manipulation, but this strategy at least gives us
a starting point in our investigation.

For our example, we must first build a simple machine 𝑃 such that 𝐿(𝑃) = 𝛴∗. This is straightforward
to do:

𝑃 = “On input 𝑥:
1. Accept.”

𝑃 accepts any string 𝑥 given to it, therefore, its language is 𝛴∗.
Let’s also build a simple machine 𝑄 such that 𝐿(𝑄) ≠ 𝛴∗. We have more options here, i.e., 𝑄 could

accept some finite number of strings. However, it is simpler to have 𝑄 simply accept nothing:

𝑄 = “On input 𝑥:
1. Reject.”

𝑄 rejects any string 𝑥 given to it, therefore, its language is ∅.
Next, let’s build 𝑀′ that is the output of our mapping function 𝑓 (⟨𝑀, 𝑤⟩). Based on our biconditional,

whenever 𝑀 accepts 𝑤, we should emulate 𝑃’s behavior; otherwise, we emulate 𝑄’s behavior. Define our
mapping function as 𝑓 (⟨𝑀, 𝑤⟩) = ⟨𝑀′⟩ where:

𝑀′ = “Ignore the input.
1. Run 𝑀 on 𝑤.
2. If 𝑀 accepts, accept.
3. If 𝑀 rejects, reject.”

Finally, let’s check that 𝑀′ has the appropriate behavior:

• If𝑀 accepts 𝑤, then the conditional of𝑀′ is always true, therefore the machine always accepts. Thus
𝐿(𝑀′) = 𝛴∗.

• If 𝑀 rejects 𝑤 then the conditional of 𝑀′ is always false, therefore the machine always rejects. Thus
𝐿(𝑀′) = ∅ ≠ 𝛴∗.

• If 𝑀 loops on 𝑤 then 𝑀′ never proceeds past line 1 and thus never accepts any string. Thus 𝐿(𝑀′) =
∅ ≠ 𝛴∗.

2 This work is licensed under a “CC BY-NC-SA 4.0” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

